• 欢迎访问浙江专升本网!本站为【传爱专升本】旗下门户网站,为广大考生提供免费专升本政策与资讯,具体专升本考试信息以浙江省教育考试院 www.zjzs.net 为准。
  • 登录 | 注册
    服务时间
    9:00-24:00
    报考解答
    还在为报考流程
    报名条件发愁?
    微信扫码添加
    发送【地区】+【年级】+专业】

    (传爱咨考专升本老师为你解答)

    学习交流
    扫码加入考生交流群
    真题福利
    扫码回复【浙江复习资料】领取
    在线做题
    扫码即可开始刷题
    商务合作
    联系我们
    0571-85055593
    客服
    浙江专升本 >考试大纲 > 2023年浙江专升本高等数学考试大纲及备考方法

    2023年浙江专升本高等数学考试大纲及备考方法

    2023-12-20 14:06:11    来源:浙江专升本    点击: 考生交流群+加入

      浙江专升本高等数学考试大纲及备考方法,高等数学总分为150分,整体难度中低为主,要想在升本考试中取得高分数,要注意升本复习中这几个维度:

      打牢基础

      根据《高等数学》考试大纲的要求,同学们需要掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。

      所以在备考的过程中,打基础是同学们必须要重视起来的,要完全理解并记住考试大纲中涉及的每个概念、公式、定理等并熟练运用。

    浙江专升本高等数学考试大纲及备考方法

      提高计算能力

      数学越来越考察同学们的计算能力,在平时的备考中,一定要认真演算每一个题目,把每一个题目计算准确并把握好时间。

      提高综合能力

      试卷的第四大题是综合题,共有三个小题,每小题10分,该题共30分,综合题占据了整张试卷1/5的分值,要想取得好的成绩综合题的得分率也不能低。

      综合题考察的是多个章节不同知识点的融合,所以吃透每个单独知识点后要思考不同知识点之间的联系。每一章学完后可以自己总结思维导图,分析知识点与知识点之间的关联,提高综合能力。

      历年真题非常重要

      每年的考试中,都会发现和以前考过的题目有相似之处,一定要吃透历年真题面对最后的大考才能心中有所把握。

      2023年浙江专升本高等数学考试大纲

    一、函数、极限和连续

      (一)函数

      1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。

      2.掌握函数的单调性、奇偶性、有界性和周期性。

      3.理解函数y =ƒ(x)与其反函数y =ƒ-1(x)之间的关系(定义域、值域、图像),会求单调函数的反函数。

      4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。

      5.掌握基本初等函数的性质及其图像。

      6.理解初等函数的概念。

      7.会建立一些简单实际问题的函数关系式。

      (二)极限

      1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。

      2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。

      3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。会比较无穷小量的阶(高阶、低阶、同阶和等价)。会运用等价无穷小量替换求极限。

      4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:浙江专升本数学大纲浙江专升本数学大纲

      并能用这两个重要极限求函数的极限。

      (三)连续

      1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。会判断分段函数在分段点的连续性。

      2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。

      3.理解“一切初等函数在其定义区间上都是连续的”,并会利用初等函数的连续性求函数的极限。

      4.掌握闭区间上连续函数的性质:最值定理(有界性定理),介值定理(零点存在定理)。会运用介值定理推证一些简单命题。

      二、一元函数微分学

      (一)导数与微分

      1.理解导数的概念及其几何意义,了解左导数与右导数的定义,理解函数的可导性与连续性的关系,会用定义求函数在一点处的导数。

      2.会求曲线上一点处的切线方程与法线方程。

      3.熟记导数的基本公式,会运用函数的四则运算求导法则,复合函数求导法则和反函数求导法则求导数。会求分段函数的导数。

      4.会求隐函数的导数。掌握对数求导法与参数方程求导法。

      5.理解高阶导数的概念,会求一些简单的函数的n阶导数。

      6.理解函数微分的概念,掌握微分运算法则与一阶微分形式不变性,理解可微与可导的关系,会求函数的一阶微分。

      (二)中值定理及导数的应用

      1.理解罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它们的几何意义,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。会用罗尔中值定理证明方程根的存在性。会用拉格朗日中值定理证明一些简单的不等式。

      2.掌握洛必达(L’Hospital)法则,会用洛必达法则求“,,”型未定式的极限。

      3.会利用导数判定函数的单调性,会求函数的单调区间,会利用函数的单调性证明一些简单的不等式。

      4.理解函数极值的概念,会求函数的极值和最值,会解决一些简单的应用问题。

      5.会判定曲线的凹凸性,会求曲线的拐点。

      6.会求曲线的渐近线(水平渐近线、垂直渐近线和斜渐近线)。

      7.会描绘一些简单的函数的图形。

      三、一元函数积分学

      (一)不定积分

      1.理解原函数与不定积分的概念及其关系,理解原函数存在定理,掌握不定积分的性质。

      2.熟记基本不定积分公式。

      3.掌握不定积分的第一类换元法(“凑”微分法),第二类换元法(限于三角换元与一些简单的根式换元)。

      4.掌握不定积分的分部积分法。

      5.会求一些简单的有理函数的不定积分。

      (二)定积分

      1.理解定积分的概念与几何意义, 掌握定积分的基本性质。

      2.理解变限积分函数的概念,掌握变限积分函数求导的方法。

      3.掌握牛顿—莱布尼茨(Newton—Leibniz)公式。

      4.掌握定积分的换元积分法与分部积分法。

      5.理解无穷区间上有界函数的广义积分与有限区间上无界函数的瑕积分的概念,掌握其计算方法。

      6.会用定积分计算平面图形的面积以及平面图形绕坐标轴旋转一周所得的旋转体的体积。

      四、无穷级数

      (一)数项级数

      1.理解级数收敛、级数发散的概念和级数的基本性质,掌握级数收敛的必要条件。

      2.熟记几何级数10.png,调和级数11.png和p—级数12.png的敛散性。会用正项级数的比较审敛法与比值审敛法判别正项级数的敛散性。

      3.理解任意项级数绝对收敛与条件收敛的概念。会用莱布尼茨(Leibnitz) 判别法判别交错级数的敛散性。

      (二)幂级数

      1.理解幂级数、幂级数收敛及和函数的概念。会求幂级数的收敛半径与收敛区间。

      2.掌握幂级数和、差、积的运算。

      3.掌握幂级数在其收敛区间内的基本性质:和函数是连续的、和函数可逐项求导及和函数可逐项积分。

      4.熟记ex,sinx,cosx,ln(1+x),13.png的麦克劳林(Maclaurin)级数,会将一些简单的初等函数展开为x-x0的幂级数。

      五、常微分方程

      (一)一阶常微分方程

      1.理解常微分方程的概念,理解常微分方程的阶、解、通解、初始条件和特解的概念。

      2.掌握可分离变量微分方程与齐次方程的解法。

      3.会求解一阶线性微分方程。

      (二)二阶常系数线性微分方程

      1.理解二阶常系数线性微分方程解的结构。

      2.会求解二阶常系数齐次线性微分方程。

      3.会求解二阶常系数非齐次线性微分方程(非齐次项限定为(Ⅰ) f(x)14.png,其中15.png为x的n次多项式,16.png为实常数;(Ⅱ)17.png,其中18.png,w为实常数,19.png20.png分别为x的n次,m次多项式)。

      六、向量代数与空间解析几何

      (一)向量代数

      1.理解向量的概念,掌握向量的表示法,会求向量的模、非零向量的方向余弦和非零向量在轴上的投影。

      2.掌握向量的线性运算(加法运算与数量乘法运算),会求向量的数量积与向量积。

      3.会求两个非零向量的夹角,掌握两个非零向量平行、垂直的充分必要条件。

      (二)平面与直线

      1.会求平面的点法式方程与一般式方程。会判定两个平面的位置关系。

      2.会求点到平面的距离。

      3.会求直线的点向式方程、一般式方程和参数式方程。会判定两条直线的位置关系。

      4.会求点到直线的距离,两条异面直线之间的距离。

      5.会判定直线与平面的位置关系。

      浙江院校专业不知道怎么选?报名报考问题不知道怎么解答?落榜没考上怎么办?【浙江专升本学历提升指导中心】的专业老师为你解答!

      各位考生可可以和【浙江专升本考生交流群】里面的老师开展一对一交流,帮助考生攻克基础知识薄弱、攻坚考试重点难点等困难,得到专属于自己的解答。敬请关注我们吧!

      以上就是关于“2023年浙江专升本高等数学考试大纲及备考方法”的全部内容,考生如果想获得更多关于常见问题、相关资讯,如考试动态、招生简章、统考动态、浙江专升本院校、历年真题、考试大纲、专升本等相关信息,敬请关注浙江专升本网(www.jswm.com.cn)

    浙江专升本尾部图片
    浙江专升本声明

    (一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。

    (二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请于我们联系,我们会及时处理。


    文章来源于网络,如有侵权,请联系删除

    本文地址:http://www.jswm.com.cn/show-1014-10787-1.html

    2024年浙江专升本便捷服务

    · 温馨提示:由于浙江专升本考试机会
    仅此一次,建议广大在校生提前备考。
    专升本考生服务

    添加我们企业微信

    回复关键词,了解更多专升本咨询

    可为您第一时间推送专升本相关资讯