• 欢迎访问浙江专升本网!本站为【传爱专升本】旗下门户网站,为广大考生提供免费专升本政策与资讯,具体专升本考试信息以浙江省教育考试院 www.zjzs.net 为准。
  • 登录 | 注册
    关注公众号

    服务时间08:00-24:00

    微信公众号

    微信公众号

    招聘交流群

    考生交流群

    微信小程序

    免费领课/找工作

    微信扫一扫
    浙江专升本 >考试大纲 > 2022年浙江省专升本高等数学考试大纲内容

    2022年浙江省专升本高等数学考试大纲内容

    2022-01-14 16:45:18    来源:浙江专升本    点击: 考生交流群+加入

      【导读】2022年浙江省专升本高等数学考试大纲内容有哪些?由于目前暂未公布22年的考纲内容,预计与往年的内容变化不大,考生们可以先参考一下2021年的考纲复习。

    2022年浙江省专升本高等数学考试大纲内容.jpg

      一、函数、极限和连续

      (一)函数

      1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。

      2.掌握函数的单调性、奇偶性、有界性和周期性。

      3.理解函数y=f(x)与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。

      4.掌握函数的四则运算与复合运算;掌握复合函数的复合过程。

      5.掌握基本初等函数的性质及其图像。

      6.理解初等函数的概念。

      7.会建立一些简单实际问题的函数关系式。

      (二)极限

      1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。

      2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。

      3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。会比较无穷小量的阶(高阶、低阶、同阶和等价)。会运用等价无穷小量替换求极限。

      4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:并能用这两个重要极限求函数的极限。

      (三)连续

      1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。会判断分段函数在分段点的连续性。

      2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。

      3.理解“一切初等函数在其定义区间上都是连续的”,并会利用初等函数的连续性求函数的极限。

      4.掌握闭区间上连续函数的性质:最值定理(有界性定理),介值定理(零点存在定理)。会运用介值定理推证一些简单命题。

      二、一元函数微分学

      (一)导数与微分

      1.理解导数的概念及其几何意义,了解左导数与右导数的定义,理解函数的可导性与连续性的关系,会用定义求函数在一点处的导数。

      2.会求曲线上一点处的切线方程与法线方程。

      3.熟记导数的基本公式,会运用函数的四则运算求导法则,复合函数求导法则和反函数求导法则求导数。会求分段函数的导数。

      4.会求隐函数的导数。掌握对数求导法与参数方程求导法。

      5.理解高阶导数的概念,会求一些简单的函数的n阶导数。

      6.理解函数微分的概念,掌握微分运算法则与一阶微分形式不变性,理解可微与可导的关系,会求函数的一阶微分。

      (二)中值定理及导数的应用

      1.理解罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它们的几何意义,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。会用罗尔中值定理证明方程根的存在性。会用拉格朗日中值定理证明一些简单的不等式。

      2.会利用导数判定函数的单调性,会求函数的单调区间,会利用函数的单调性证明一些简单的不等式。

      3.理解函数极值的概念,会求函数的极值和最值,会解决一些简单的应用问题。

      4.会判定曲线的凹凸性,会求曲线的拐点。

      5.会求曲线的渐近线(水平渐近线、垂直渐近线和斜渐近线)。

      6.会描绘一些简单的函数的图形。

      三、一元函数积分学

      (一)不定积分

      1.理解原函数与不定积分的概念及其关系,理解原函数存在定理,掌握不定积分的性质。

      2.熟记基本不定积分公式。

      3.掌握不定积分的第一类换元法(“凑”微分法),第二类换元法(限于三角换元与一些简单的根式换元)。

      4.掌握不定积分的分部积分法。

      5.会求一些简单的有理函数的不定积分。

      (二)定积分

      1.理解定积分的概念与几何意义,掌握定积分的基本性质。

      2.理解变限积分函数的概念,掌握变限积分函数求导的方法。

      3.掌握牛顿—莱布尼茨(Newton—Leibniz)公式。

      4.掌握定积分的换元积分法与分部积分法。

      5.理解无穷区间上有界函数的广义积分与有限区间上无界函数的瑕积分的概念,掌握其计算方法。

      6.会用定积分计算平面图形的面积以及平面图形绕坐标轴旋转一周所得的旋转体的体积。

      四、无穷级数

      (一)数项级数

      1.理解级数收敛、级数发散的概念和级数的基本性质,掌握级数收敛的必要条件。

      2.理解任意项级数绝对收敛与条件收敛的概念。会用莱布尼茨(Leibnitz)判别法判别交错级数的敛散性。

      (二)幂级数

      1.理解幂级数、幂级数收敛及和函数的概念。会求幂级数的收敛半径与收敛区间。

      2.掌握幂级数和、差、积的运算。

      3.掌握幂级数在其收敛区间内的基本性质:和函数是连续的、和函数可逐项求导及和函数可逐项积分。

      五、常微分方程

      (一)一阶常微分方程

      1.理解常微分方程的概念,理解常微分方程的阶、解、通解、初始条件和特解的概念。

      2.掌握可分离变量微分方程与齐次方程的解法。

      3.会求解一阶线性微分方程。

      (二)二阶常系数线性微分方程

      1.理解二阶常系数线性微分方程解的结构。

      2.会求解二阶常系数齐次线性微分方程。

      六、向量代数与空间解析几何

      (一)向量代数

      1.理解向量的概念,掌握向量的表示法,会求向量的模、非零向量的方向余弦和非零向量在轴上的投影。

      2.掌握向量的线性运算(加法运算与数量乘法运算),会求向量的数量积与向量积。

      3.会求两个非零向量的夹角,掌握两个非零向量平行、垂直的充分必要条件。

      (二)平面与直线

      1.会求平面的点法式方程与一般式方程。会判定两个平面的位置关系。

      2.会求点到平面的距离。

      3.会求直线的点向式方程、一般式方程和参数式方程。会判定两条直线的位置关系。

      4.会求点到直线的距离,两条异面直线之间的距离。

      5.会判定直线与平面的位置关系。

      以上就是关于2022年浙江省专升本高等数学考试大纲内容的全部内容,若考生还想了解更多关于浙江统招专升本的相关资讯,如浙江专升本常见问题、统招考试、统考动态、复习方法等,敬请关注浙江专升本报名网。也可以关注公众号:浙江专升本之家(zjszsbw)。


    浙江专升本尾部图片
    浙江专升本声明

    (一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。

    (二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请于我们联系,我们会及时处理。


    转载请注明:文章转载自http://www.jswm.com.cn/

    本文地址:http://www.jswm.com.cn/show-1014-7129-1.html

    点击继续阅读>>

    扫码登录

    扫码关注“浙江专升本”微信公众号

    即可查看余下内容

    二维码以过期,请重新刷新

    2022年浙江专升本便捷服务

    · 温馨提示:由于专升本考试机会一年
    仅此一次,建议广大在校生提前备考。

    考生交流群

    微信公众号

    浙江专升本微信交流群

    扫一扫加入微信交流群

    与考生自由互动、并且能直接与资深老师进行交流、解答。
    浙江专升本微信公众号

    扫一扫关注微信公众号

    随时获取专升本政策、资讯、以及各类学习资料、试题题库、咨询解答。